Author Archives: ssokol

Byssokol

Service Bulletin: ForeFlight Disconnect Issue

Update – 10/25/17 – This morning ForeFlight released version 9.4.3 which appears to have fixed the disconnect issue. Many thanks to the users who helped out by submitting data to the ForeFlight support team, and to ForeFlight for getting this resolved quickly in a point release. -S

We have recently received a number of trouble tickets regarding an issue with the most recent updates to ForeFlight. ForeFlight will connect to FlightBox, but after a number of minutes will display a message indicating that ADS-B has disconnected. Thereafter ForeFlight will usually (though not always) reconnect. This pattern repeats on a frequent basis.

This is a ForeFlight issue, not a FlightBox issue. We have been in communication with the support group at ForeFlight and they have acknowledge that changes to their application, coupled with a number of additional factors (see below) appear to be causing this behavior. This issue also impacts users of the Scout ADS-B receiver and possibly other ADS-B receivers officially supported by ForeFlight, including the Stratus and FreeFlight receivers.

ForeFlight has informed us that they have a tentative solution to this problem will be releasing an update at some point in the near future.  They did not provide a timeline for the update. If a release date is announced we will update this post.

We recommend that if you are experiencing this issue you do the following:

Enable ADS-B logging in ForeFlight. Start by connecting your tablet to your FlightBox. In ForeFlight go to “More”, then “Devices”. Select the “ADS-B” device, then scroll down to the “Settings” section and turn on the “Logging” switch. This will cause ForeFlight to upload the ADS-B log when your device is connected to the Internet.

The next time the issue occurs, take a screenshot showing the disconnect message. You can do this by pressing the Power and Home buttons at the same time. The screenshot image can be found in the Photos app.

Email the screen-shot to the ForeFlight support group (team@foreflight.com), along with a brief note explaining that you are experiencing the ADS-B disconnect issue. Let them know that you have logging enabled.

Follow up with any responses from the support team. They may need some additional information regarding your configuration.

The issue seems to be most prevalent on older iOS devices running iOS 11.x and a 9.x release of ForeFlight Mobile. It appears to happen on both the iPad and iPhone versions of ForeFlight. In some cases rebooting the iOS device has helped restore operation. This is more often the case with newer devices than with older devices.

Here is a screen shot of the issue as it appears on an iPhone:

 

Byssokol

AHRS Board Now In Stock

After rather a longer wait than we had hoped, we now have our AHRS / GPS / Baro sensor boards back in stock. For those who already have a FlightBox, we’re offering upgrade kits for $160. For those who have not yet purchased a FlightBox, you can add the AHRS components to any Dual Band or Single Band kit for $150. If you would prefer we do the installation, we offer upgrade services for $35.

For more information on AHRS, please see the AHRS page. To order, please see the web store.

Byssokol

Introducing FlightBox Pro

FlightBox Pro – FAA Approved For Permanent Installation

I’m extremely pleased to announce that Open Flight Solutions has received FAA approval for FlightBox Pro, a new version of our FlightBox ADS-B / GPS / AHRS system which can be permanently installed in certified aircraft as a minor alteration. FlightBox Pro, priced at $675, provides weather, traffic, WAAS GPS, barometric altitude, G-force, and advisory attitude data to applications running on tablets, smartphones, and portable navigators. Coupled with a tablet and a mount, FlightBox Pro serves as the core of a powerful yet inexpensive MFD.

FAA approval means that FlightBox Pro can be installed permanently: mounted to the airframe; wired to the avionics buss; connected to external ADS-B and GPS antennas. A permanently installed system is more convenient, reduces clutter in the cockpit, improves ADS-B and GPS reception, and provides more accurate AHRS and G-meter functionality. Installation can be done by any licensed A&P mechanic or repair station. The process typically takes one to two hours – less if you have existing antennas. The FAA approval permits the installation of FlightBox Pro on any Part 23 / CAR3 airplane and any Part 27 or Part 29 rotorcraft. The installation is deemed to be a minor alteration under most circumstances, requiring only a logbook entry.

FlightBox Pro is the first multifunction system to be approved under the FAA’s NORSEE policy. NORSEE stands for “Non-Required Safety-Enhancing Equipment”. The policy was created in 2015 as a simplified means of reviewing and authorizing products which have the potential to make flying safer. NORSEE is one of several efforts by the FAA to improve the safety of the legacy fleet. Other NORSEE-approved products include a line of iPad and iPhone mounts from Guardian Avionics – great for creating that MFD.

FlightBox Pro is available for pre-order today and is expected to ship in April. The $675 package includes the FlightBox Pro, a dash-mount GPS antenna, cabin-mount 1090 and 978 MHz ADS-B antennas, SMA extension cables and an antenna mount bracket. We are also offering a number of adapters for those who want to connect their FlightBox Pro to external antennas that use BNC, TNCF, and other connector styles. Avionics shops and many A&Ps should be able to fabricate appropriate connections.

Open Flight Solutions does not currently plan to sell external antennas. You can use inexpensive transponder / DME antennas (typically $25 – $35 each) for both ADS-B bands. Aviation GPS antennas are generally quite a bit more expensive, but you can often find used antennas left over from upgrades at a reasonable price. We tested FlightBox Pro using an AeroAntenna AT575-9 that had been connected to an Apollo GPS — it worked flawlessly.

For those who’s A&P or avionics shop demand proof, here’s a link to the approval letter from the FAA.

Byssokol

FlightBox On AOPA Live This Week

AOPA senior editor Ian Twombly gave FlightBox a test drive. Jump to 6:00 for the story:

Byssokol

AHRS Side-By-Side Test

The FlightBox AHRS isn’t quite as smooth as the G1000, but given the $80,000 difference in price I’m not going to complain.

Byssokol

AHRS In Action Video

Pardon the poor video work, but it’s actually rather difficult to fly and film at the same time. This brief clip shows the new AHRS board in action. It’s a production board with beta software. The pitch is dead-on. Roll is off a bit, because the FlightBox was sitting in the seat beside me rather than mounted to a level surface. I’ll try to get a better video with a solid mounting next time the weather clear up here.

Byssokol

AHRS Now Available

Add Some Attitude To Your FlightBox

Byssokol

AHRS / GPS / Baro Board Available For Pre-Order

Since we launched FlightBox last January, the most frequent request – by far – has been to add AHRS capabilities. We started working on a design as soon as we dug out from under the avalanche of Kickstarter orders in March. After nine months of designing, rAHRS Boarde-designing, refactoring and prototyping I am happy to announce that now have a final design. We will begin taking pre-orders on Monday, November 28 (“Cyber Monday”) and expect to deliver in January.

The board includes a number of sensors:

  • InvenSense MPU-9250 IMU – a multifunction sensor that includes a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. The MPU-9250 provides inertial and magnetic data to the AHRS algorithm.
  • Bosh BMP-280 Barometric Pressure Sensor – a high-precision digital altimeter.
  • u-Blox MAX-M8 GNSS Receiver – a WAAS GPS receiver with a 10 Hz update rate, an onboard high-gain antenna, and support for remote powered antennas.

The data provided by these sensors will allow FlightBox to create an accurate estimate of your aircraft’s attitude, position, and cabin altitude. The attitude data can be used to drive attitude and synthetic vision displays on compatible1 EFB applications. The barometric sensor provides accurate cabin altitude – typically within 25′ of barometric altitude in unpressurized aircraft. The GPS – our first internal GPS since we dropped the VK-172 in May – assists in the attitude solution and provides highly accurate position information.

The board also includes a set of status LEDs and a fan speed controller. The LEDs show power status, GPS lock status, and ADS-B reception status. The fan controller adjusts fan speed based on system temperature, saving battery power.

The new board is built as a “shield” for the Raspberry Pi computer. It attaches directly to the 40-pin option header on the Pi, making installation very easy. As we’ve done for our other accessories, we will publish a video that takes you through the installation process step-by-step.

FlightBox With Replacement Top

We will be offering the new board in two configurations. For FlightBox owners we will have a complete upgrade kit that includes the board, a new top, and an new fan. Stratux DIY users (who are not using a FlightBox case) will be able to order just the board. The complete FlightBox upgrade kit will sell for $160. The board-only kit will sell for $140.

AHRS requires a combination of hardware and software. The hardware on the new board will require a FlightBox update which we will release when the boards start shipping in January. The update will also include the serial output feature and an automatic flight logging feature.

For those who would prefer to leave the installation and the update to the professionals, we will be offering an update / upgrade service for an additional $25. Send in your existing FlightBox and we will send it back with the AHRS board, new top and updated firmware.

1. The FlightBox attitude feature is not currently compatible with ForeFlight.

Byssokol

Preview Available: Serial Output for EFIS, MFD

USB-to-RS232 Adapter

One of the top three requests I’ve received since launching FlightBox is a way to send the ADS-B data to an EFIS or MFD. FlightBox usually delivers ADS-B and (optionally) GPS data to a display system over Wifi. This works very well for tablets and newer portable navigators, but there are many in-panel displays that do not have a Wifi interface. Most of these use the RS-232 serial standard instead. To get the data from FlightBox to an RS-232 port on an EFIS we use a USB-to-serial converter. This posed a bit more of a challenge than you might imagine, as most GPS devices also use a USB-to-serial converter.

If a GPS and the RS-232 output adapter both use the same USB-to-serial chip, they show up in the Raspberry Pi as something like “usb_serial1” and “usb_serial2”. To make matters more challenging, they don’t always get the same assignment – whichever device initializes first becomes “1” and the next becomes “2”. This leads the system thinking the GPS is disconnected or broken while pumping ADS-B data at it, instead of the display system. Not good.

To solve this, we found a USB-to-serial adapter that allows us to program a custom “name” for each device. (We do something similar to the radio modules to keep the 1090 and 978 functions associated with the correct module.) We currently have a limited number (as in, 8) of these adapters in stock. More are on the way. I’ve not added them to the default catalog on the web store, but you can find them here.

Each kit comes with the 6′ adapter cable (ends in bare wires), a 6″ USB pigtail cable, and a wiring guide. The adapter has six wires, but only two – transmit and ground – are required for most ADS-B In applications. The output from the adapter uses the RS-232 protocol and should not be connected to “TTL serial” inputs which use a different voltage range. (Most if not all avionics use RS-232, but check before hooking something up.)

The system defaults to a baud rate of 38,400 bps, 8 data bits, one stop bit, and no parity. At this point the data bits, stop bit, and parity are fixed, but we have included a field in the Settings tab of the web application to adjust the baud rate. Some hardware, including the iFly GPS systems, requires the baud rate be adjusted up to 115,200 bps.

Thus far, the serial output has been successfully tested with systems from GRT (big thanks to Greg Toman), iFly GPS (big thanks to Shane Woodson), and a Chelton MFD. FlightBox uses the industry standard GDL-90 format, which means that it should work with many other EFIS and MFDs.

Installation – FlightBox Side

There is one potential issue with installing the serial output. It uses the top-center USB port on the Raspberry Pi – the same port we have been using for the GPS. In many cases that won’t be a problem – if you’re using the FlightBox in an aircraft with an EFIS or MFD, you probably don’t need a GPS. In some cases, however, users will want both. If you need to have both the serial output and the GPS connected, you have two options – you can use an external USB hub or you can make some modifications to your FlightBox case. (If you have an early FlightBox unit with a Raspberry Pi 2 and a USB Wifi module you will need to use the USB hub option.)

The USB hub option is the least invasive but costs a bit ($10 – $15) and adds another potential point of failure. You can use a simple non-powered hub as neither the GPS nor the RS-232 adapter draws any appreciable current. Amazon offers a number of basic two-port USB hubs that should work. I’ve ordered this one and will be trying it out.

The case modification procedure requires you remove one of the three cleats that hold the top on (the other two do a more than adequate job) and make a small incision in the end of the case (opposite the top-right USB port) to allow another USB cable to exit the box. Needless to say, you do this at your own risk.

Installation – Display Side

The RS-232 cable ends in six bare wires. The only two that matter for ADS-B are the black ground wire and the orange transmit line, both of which will need to be connected to pins on your display system. Unfortunately, there is no universal standard for serial avionics connections, so you will need to consult your avionics system’s manual to determine the type of connector you need. Many use the classic “DB-9” input, while others use DB-15, DB-25, and other, more arcane connectors. The display-side connection will require either crimping or soldering, depending on the connector style.

The iFly 700 uses – wait for it – USB, so you will need a USB to RS-232 adapter. Yes, that’s right, you’ll have two RS-232 adapters back-to-back. (No, you cannot just use a male-USB-to-male-USB cable. Won’t work.)

Installation – Beta Update / Image

If you are interested in trying out the serial output feature, you’ll need to order a cable and to download and install either the beta image or the beta update. The image is useful if you’re technically inclined and have an extra micro SD card available. Follow the imaging instructions here to image your card.

The update is simpler to install, as you simply use the update feature of the Web UI, but may cause issues including bricking your system. We’ve done SOME testing, installing the update on working 1.0r1 systems. We’ve not yet been through the process of testing it on every released build (0.8r2, 0.8r3, 0.8r3a) or every hardware configuration (Pi 2 with USB Wifi module) so your mileage may vary. If something goes wrong, simply re-image with either the beta image or 1.0r1.

Feedback

The reason we’re releasing this beta is to gather feedback from users. If you install the new version and have questions or problems, please post something on our Community Support Forum.

Serial Input?

One interesting side effect of adding serial output is that it comes with serial input. If your experimental avionics package has an output for something useful – engine data, air data, AHRS data, etc., it would be relatively simple to use the available RX line on the serial adapter to feed that information into the FlightBox and broadcast it over Wifi to tablets, etc. Anyone have any suggestions or ideas for what we might be able to do with the serial input?

NOTICE: FlightBox is not approved for permanent installation in type certificated aircraft. Integrating with an MFD or other certified panel mount display system may invalidate the airworthiness of your aircraft. Use caution. Talk with your avionics shop or technician. Do not break the law!